An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens
نویسندگان
چکیده
Phenylalanine ammonia-lyase (PAL) has a crucial role in secondary phenylpropanoid metabolism and is one of the most extensively studied enzymes with respect to plant responses to biotic and abiotic stress. Here, we identified the pepper (Capsicum annuum) PAL (CaPAL1) gene, which was induced in pepper leaves by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaPAL1-silenced pepper plants exhibited increased susceptibility to virulent and avirulent Xcv infection. Reactive oxygen species (ROS), hypersensitive cell death, expression of the salicylic acid (SA)-dependent marker gene CaPR1, SA accumulation, and induction of PAL activity were significantly compromised in the CaPAL1-silenced pepper plants during Xcv infection. Overexpression (OX) of CaPAL1 in Arabidopsis conferred increased resistance to Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis infection. CaPAL1-OX leaves exhibited restricted Pst growth, increased ROS burst and cell death, and induction of PR1 expression and SA accumulation. The increase in PAL activity in healthy and Pst-infected leaves was higher in CaPAL1-OX plants than in wild-type Arabidopsis. Taken together, these results suggest that CaPAL1 acts as a positive regulator of SA-dependent defence signalling to combat microbial pathogens via its enzymatic activity in the phenylpropanoid pathway.
منابع مشابه
Impact of Salicylic Acid on Phenolic Metabolism and Antioxidant Activity in Four Grape Cultivars during Cold Storage
Salicylic acid (SA) plays an important role in the regulation of plant ripening and responses to abiotic stresses. In this study, the protective effect of SA on cold stress-caused oxidative damage in grape (Vitis vinifera L.) bunches was investigated during cold storage. Grape bunches treated with 2 mM SA and stored at 0°C with 85-90% RH for 30 days. Samples were selected from each treatment ...
متن کاملInvolvement of protein kinases and calcium in the NO-signalling cascade for defence-gene induction in ozonated tobacco plants.
This study analyses the signalling pathways triggered by nitric oxide (NO) in response to ozone (O(3)) fumigation of tobacco plants, with particular attention to protein kinase cascades and free cytosolic Ca(2+) in defence-gene activation. NO was visualized with the NO probe DAF-FM. Using a pharmacological approach, the effects of different inhibitors on the expression profiles of NO-dependent ...
متن کاملHarpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures.
Programmed cell death is increasingly viewed as a key component of the hypersensitive disease resistance response of plants. The generation of reactive oxygen species (ROS) such as H2O2 triggers a cell death programme in Arabidopsis suspension cultures following challenge with the bacterial elicitor harpin. Both harpin and exogenous H2O2 initiate a cell death pathway that requires gene expressi...
متن کاملProduction of Salicylic Acid Precursors Is a Major Function of Phenylalanine Ammonia-Lyase in the Resistance of Arabidopsis to Peronospora parasitica.
Arabidopsis ecotype Columbia (Col-0) seedlings, transformed with a phenylalanine ammonia-lyase 1 promoter (PAL1)-[beta]-glucuronidase (GUS) reporter construct, were inoculated with virulent and avirulent isolates of Peronospora parasitica. The PAL1 promoter was constitutively active in the light in vascular tissue but was induced only in the vicinity of fungal structures in the incompatible int...
متن کامل3-Acetonyl-3-hydroxyoxindole: a new inducer of systemic acquired resistance in plants.
Systemic acquired resistance (SAR) is an inducible defence mechanism which plays a central role in protecting plants from microbial pathogen attack. Guided by bioassays, a new chemical inducer of SAR was isolated from the extracts of Strobilanthes cusia and identified to be 3-acetonyl-3-hydroxyoxindole (AHO), a derivative of isatin. Tobacco plants treated with AHO exhibited enhanced resistance ...
متن کامل